
Notes on Logical Expression

for Brandom's Seminar

Dan Kaplan

dan.kaplan@pitt.edu

October 12, 2022

Contents

1 Logical Expressivism: A Precisi�cation 2

1.1 A Note On Structural Features (Re: Second Kind of Expression) . . . 3

2 Introducing NM-MS 5

2.1 A Special Case for Containment . . . . . . . . . . . . . . . . . . . . . 6
2.2 Some Features of NM-MS . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Expression 1 & Expressive Completeness 8

4 Expression 2 & Expressive Completeness 2 10

4.1 Expressing Structural Features . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Some Defective Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



Dan Kaplan Logical Expression October 12, 2022

1 Logical Expressivism: A Precisi�cation

De�nition 1.1. Brandom understands expressivism in terms of what he calls an
�LX relation�, where a vocabulary B is �LX� of a vocabulary A if it is elaborated
from and explicative of A. The �rst criterion (elaboration) has it that if one is
able to successfully deploy vocabulary A then one already has the skills necessary to
use B. That is, that B may be (algorithmetically) elaborated from A. The second
criterion (explication) has it that B says something about (makes perspicuous in the
object language) what one was doing by using A (minimally that B may encode the
implications and incompatibilities of A). Logical vocabulary is said to be �universally
LX� meaning that logical vocabulary stands in this relation to all vocabularies.

De�nition 1.2 (Expression 1). Fix a logic L, i.e. a function from �0 to �. We say
that L is expressive or that � expresses a base consequence relation �0 i�:

(∀Γ,Θ ⊆ L)(∃Γ1,Θ1, . . . ,Γn,Θn ⊆ L0)

(∀�0 ⊆ P(L0)
2)(∀� ⊆ P(L)2(L : �0 7→ �))

((Γ � Θ)⇔(Γ1 �0 Θ1

∧
Γ2 �0 Θ2

∧
· · ·
∧

Γn �0 Θn)).

We also say Γ � Θ expresses Γi �0 Θi (1 ≤ i ≤ n) (its expressientia).

De�nition 1.3. Let Sf be a structural feature. O�cially, a structural feature is a
property of elements of consequence relations. So we can think of Sf as a family of
partitions, one for each member of the family of consequence relations (i.e. a partition
for each subset of P(L) × P(L)).1 Let Sf(Γ � Θ) be shorthand for Γ � Θ obeys (is
an instance of) Sf. Next, let Γ � Θ be arbitrary with Γi �0 Θi (1 ≤ i ≤ n) its
expressientia (in accordance with De�nition 1.2). We say that a logic L preserves

a structural feature Sf i�:

Sf(Γ � Θ)⇔
(
Sf(Γ1 �0 Θ1)

∧
· · ·
∧

Sf(Γn �0 Θn)
)
.

De�nition 1.4 (Expression 2). Let Sf be a structural feature. Suppose some logical
operation `*' may be used to mark a sequent in some way (with the constraint that
Γ∗ � Θ∗ only if Γ � Θ). Then we say that `*' (or L) expresses Sf i� there exists a `*'
in L such that:

Γ∗ � Θ∗ ⇔ Sf(Γ � Θ).
1Uno�cially, a structural feature usually has something like an intension associated with it. It

may be that the monotonic and transitive consequences of a consequence relation are the same. Nev-
ertheless, the characterization of each is di�erent, because the extensions may di�er on a di�erent
consequence relation.
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Sf-Expression combines three ideas. (i) That a logic be capable of expressing an
underlying base consequence relation, (ii) that it be capable of preserving structural
features of that base consequence relation, and �nally (iii) that it be able to mark in
the object language those very same features that it preserves.

I want to show two things:

1. I introduce a logic that is expressively complete in the sense of Expression 1
(Def 1.2)

2. The same logic is also expressively complete in the sense of Expression 2 (Def
1.4). All structural features that are preserved may be expressed.

1.1 A Note On Structural Features (Re: Second Kind of Ex-
pression)

Typically consequence relations (the thing that we want to express (features of)) are
assumed to be fully structural, i.e.:

• Monotonic

• Transitive

• Contractive

• Re�exive

Non-Monotonicity

A1 =�This piece of pasta is long and cylindrical�

A2 =�This piece of pasta is spaghetti�

Clearly,
A1 ` A2

B1 =�This piece of pasta is smooth, tubular, and straight-cut�

B2 =�This piece of pasta is cannelloni�

Clearly,
B1 ` B2
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Next, suppose C = �This piece of pasta is bucatini�. Clearly,

A1, B1 6` A2

A1, B1 6` B2

A1, B1 ` C

Non-Transitivity

C1 =�This is a piece of pasta is bucatini�

C2 =�This piece of pasta is long (pasta lunga)�

C3 =�This piece of pasta could be made by rolling and cutting (lasagna type)�

Clearly,

C1 ` C2

C2 ` C3

C1 6` C3

Non-Contractiveness & Non-Re�exiveness

Won't be motivated today...

Further Considerations

• Central commitment of inferentialists (non-representationalist) that content
have two dimensions (role in premises and conclusions; �implicit content� and
�explicit content�). All of the structural features run these notions together,
i.e. collapse role in premises and conclusions.

• To be clearer: to specify what follows from a sentence A would be su�cient to
characterize its content given all of those structural features.

Conceptually: closed consequence relation; fully structural consequence relations
must be rejected

4



Dan Kaplan Logical Expression October 12, 2022

2 Introducing NM-MS

De�nition 2.1 (Base Consequence Relation (BCR)). A base consequence relation
is a relation between �nite multi-sets of atomic sentences, e.g. `0⊆ P(L0)

2 (where
L0 is the set of all atomic sentences of the language).

Start with �material� base consequence relation, i.e. a base consequence relation
with no further constraints on it.

To be clear, none of the following constraints on a base consequence relation:

De�nition 2.2 (Constraints on a base). A base consequence relation may satisfy
certain constraints.

Re�exive: A BCR is re�exive i�, for all p ∈ L0: p `0 p.

Containment: A BCR satis�es containment i�, for all p ∈ L0 all 〈∆,Λ〉 ∈ P(L0)
2

we have: ∆, p `0 p,Λ.

Monotonicity: A BCR is monotonic i� for all 〈Γ,Θ〉 and 〈∆,Λ〉 in P(L0)
2 we

have: if Γ `0 Θ then ∆,Γ `0 Θ,Λ.

Contractive: A BCR is contractive i� A,A,Γ `0 Θ only if A,Γ `0 Θ and Γ `0
Θ, A,A only if Γ `0 Θ, A (for arbitrary Γ,Θ, A).

Transitive: A BCR is transitive i� A,Γ `0 Θ and Γ `0 Θ, A only if Γ `0 Θ (for
arbitrary Γ,Θ, A.2

Next, I de�ne a consequence relation, ` as any sequent derivable from the sequent
calculus below, where the leaves are generated from a single Axiom (given a particular
BCR `0).

Axiom: If Γ `0 Θ then Γ ` Θ.

Γ ` Θ, A B,Γ ` Θ
L→

A→ B,Γ ` Θ

A,Γ ` Θ, B
R→

Γ ` A→ B,Θ

Γ, A,B ` Θ
L&

Γ, A&B ` Θ

Γ ` Θ, A Γ ` Θ, B
R&

Γ ` Θ, A&B

2We can de�ne a similar version for mixed-cut. I do not in this document.
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A,Γ ` Θ B,Γ ` Θ
L∨

A ∨B,Γ ` Θ

Γ ` Θ, A,B
R∨

Γ ` Θ, A ∨B
Γ ` Θ, A

L¬¬A,Γ ` Θ

A,Γ ` Θ
R¬

Γ ` Θ,¬A

2.1 A Special Case for Containment

• As inferentialist we believe that the meaning of a sentence is determined by its
role in implication

• As expressivists we believe that the role of logical vocabulary is to express such
roles and the relationships between them

• Thus, if two sentences have the same meaning (i.e. participate in the same
implications identically, i.e. can be substituted for one another:

A,Γ ` ∆⇔ B,Γ ` ∆

Γ ` ∆, A⇔ Γ ` ∆, B

then this ought to be expressible:

∀Γ,∆ ⊆ L(Γ, A ` B∆)

∀Γ,∆ ⊆ L(Γ, B ` A∆)

Proposition 2.3. Suppose A and B have the same meaning (i.e. can be substituted
for one another). Then they imply each other in arbitrary contexts:

∀Γ,∆ ⊆ L(Γ, A ` B,∆)

∀Γ,∆ ⊆ L(Γ, B ` A,∆)

i� CO holds:
∀Γ,∆ ⊆ L∀C ∈ L(Γ, C ` C,∆)

Proof. (⇒) We get CO as a special case where A = B.
(⇐) Suppose CO holds, then Γ, A ` A,∆ for arbitrary Γ,∆. Since A and B can

be intersubstituted clearly:

(Γ, A ` B∆)

(Γ, B ` A∆)

�
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2.2 Some Features of NM-MS

Theorem 2.4. If Γ ` Θ may be arbitrarily weakened with atoms, then it may be
arbitrarily weakened with logically complex sentences:

∀∆0,Λ0 ⊆ L0(∆0,Γ ` Θ,Λ0)⇔ ∀∆,Λ ⊆ L(∆,Γ ` Θ,Λ).

Proof. (⇐) is immediate. (⇒) is proven by induction on the complexity of ∆ ∪ Λ
where complexity is understood in terms of the complexity of the most complex
sentences in ∆ ∪ Λ. �

Theorem 2.5. If Γ ` Θ allows contraction of atomic sentences, then it allows
contraction of logically complex sentences.

Proof. One direction is trivial, the other direction is provided by induction on the
complexity of the contracted sentence. �

Since it is well known that the rules featured above are equivalent to both the
additive and multiplicative rules of linear logic given contraction and monotonicity,
we can actually locate the condition needed for our logic to be supra-classical.

De�nition 2.6. We say that `0 obeys Containment (CO) if

∀∆,Λ ⊆ L0(∆, p `0 p,Λ)

(i.e. if we have ∀q ∈ L0(q `0 q) and all such sequents may be arbitrarily weakened;
the fragment carved out by this stipulation will also obviously obey contraction). In
short: let us de�ne `CO

0 such that `CO
0 obeys re�exivity ∀q ∈ L0(q `0 q), weakening

and contraction. And further stipulate that no proper subset of `CO
0 obeys all of

these conditions. A base consequence relation `0 is said to obey CO i� it includes
`CO
0 , i.e. `CO

0 ⊆`0.

Theorem 2.7. If `0 obeys CO, then ` is supra-classical.

Proof. Result is well known, but can be easily established by showing an equivalence
with Gentzen's LK in the fragment of ` generated by `CO

0 . �

Finally, the next theorem is of particular import to the sections following this one.

Theorem 2.8. All rules of the sequent calculus are reversible. That is, if Γ ` Θ
would be the result of the application of a rule to Γ∗ ` Θ∗ (and possibly Γ∗∗ ` Θ∗∗)
then

Γ ` Θ⇔ Γ∗ ` Θ∗(and Γ∗∗ ` Θ∗∗).
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Proof. Proof is straightforward by induction on proof height. �

From this my �rst gloss on logical expression follows immediately. In the next section
I prove that the more precise sense (in De�nition 1.2) also holds.

Corollary 2.9. The sequent calculus is conservative. That is

Γ `0 Θ⇔ Γ ` Θ.

3 Expression 1 & Expressive Completeness

Next I show how consequence relations may be represented in NM-MS. First two
central results concerning conjunctive and disjunctive normal forms.

Proposition 3.1. Let CNF (A) be the conjunctive normal form representation of
A. It follows that

Γ ` Θ, A⇔ Γ ` Θ, CNF (A).

Proof. Proof proceeds constructively. From theorem 2.8, we may deconstruct A until
we have a number of sequents of the form: Γ ` Θ,Λ1; Γ ` Θ,Λ2; . . . Γ ` Θ,Λn where
Λi(1 ≤ i ≤ n) contains only literals. We next construct CNF (A) via repeated
application of R∨ and R&:

Γ ` Θ, (∨Λ1)&(∨Λ2)& · · ·&(∨Λn),

i.e. Γ ` Θ, CNF (A). �

Proposition 3.2. Let DNF (A) be the disjunctive normal form representation of A.
It follows that

A,Γ ` Θ⇔ DNF (A),Γ ` Θ.

Proof. Proof is identical to the previous proposition except the sets are on the left
and we construct DNF (A) via L& and L∨. �

Theorem 3.3 (Representation Theorem 1). Let CR be a consequence relation, i.e.
CR ⊆ P(L)2. Then we may specify what must be included in `0 such that CR ⊆`.
Proof. Proof proceeds constructively. For each Γ ` Θ in CR let us �nd an equivalent
CNF (A) ` CNF (B). This has the form:

(&Γ1) ∨ · · · ∨ (&Γa) ` (∨Θ1)& · · ·&(∨Θb).

This holds just in case (for 1 ≤ i ≤ a and 1 ≤ j ≤ b) Γi `0 Θj. Thus we stipulate of
the base that Γi `0 Θj for 1 ≤ i ≤ a and 1 ≤ j ≤ b. If we do this for each implication
in CR then we are guaranteed that CR ⊆`. �
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Theorem 3.4 (Representation Theorem 2). Let CR be a consequence relation. If
CR is closed under some modest syntactic constraints,3 then we may specify `0 such
that CR =`.

Proof. Proof is identical to the �rst Representation Theorem except that the syn-
tactic constraints on CR have it that `= CR. �

These results give us a way of saying exactly how to reconstruct arbitrary con-
sequence relations using my machinery and given some modest constraints how to
reconstruct them exactly. It is this ability to reconstruct consequence relations ex-
actly that will prove most important. For what it shows is that we are able to �nd
exactly which pre-logical implications an arbitrary implication involving logical vo-
cabulary expresses. That is, what I have shown is a method for �nding exactly which
implications in `0 are expressed by each implication in `. We are thus in a position
to prove the following straight away.

Theorem 3.5 (Expressive Completeness). NM-MS is expressive. That is, we have

Γ ` Θ⇔ (Γ1 `0 Θ1

∧
· · ·
∧

Γn `0 Θn).

for some Γ1,Θ1, . . . ,Γn,Θn and arbitrary `0.

Proof. Suppose Γ ` Θ and let it be equivalent to DNF (A) ` CNF (B) for some A
and B. This has the form:

(&Γ1) ∨ · · · ∨ (&Γa) ` (∨Θ1)& · · ·&(∨Θb).

This holds just in case (for 1 ≤ i ≤ a and 1 ≤ j ≤ b) Γi `0 Θj. Next, let us
enumerate 〈i, j〉 as 1, . . . , n. Then we have that:

Γ ` Θ⇔ (Γ1 `0 Θ1

∧
· · ·
∧

Γn `0 Θn).

�
3In a more formal account I treat representation as of theories (see the appendix). Here I char-

acterize it in terms of consequence relations, where we are able to precisely represent a consequence
relation just in case it is closed under the rules of NM-MS. In the case where we wish to treat theories
instead, then a theory T must meet the following constraints: &-composition and -decomposition
(A,B ∈ T i� A&B ∈ T ), Distribution (of ∨ over &) (A ∨ (B&C)) ∈ T i� (A ∨ B)&(A ∨ C) ∈ T ,
Conditional Equivalence (A→ B = σ is a sub-formula of τ ∈ T i� ¬A ∨B = σ′ is a subformula of
τ ∈ T ), both De-Morgan's Equivalences (likewise de�ned over sub-formulae) and involution (also
de�ned over subformulae).
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4 Expression 2 & Expressive Completeness 2

First, let us enrich our sequent calculus by introducing a second turnstile `S. Now
let `S0 pick out some subset of `0. Later I will discuss principles for determining
which subset, but for now I leave the details vague. We may introduce the following
rules to our sequent calculus:4

Axiom 2: If Γ `S0 Θ then Γ `S Θ.

A,Γ `S Θ
LS

SA,Γ `[S] Θ

Γ `S Θ, A
RS

Γ `[S] Θ,SA

Lemma 4.1. LS and RS are reversible rules.

We thus have the following result.

Theorem 4.2 (Expressive Completeness 2). Let Sf be a structural rule. Suppose
that Sf is preserved (in the sense of De�nition 1.3) and suppose further that `S
marks that structural feature exactly. We thus have: Sf(Γ ` Θ) i� Γ `S Θ. It
follows that S expresses (in the sense of De�nition 1.4) Sf. Thus:

SA,Γ ` Θ⇔ Sf(A,Γ ` Θ)

Γ ` Θ,SA⇔ Sf(A,Γ ` Θ, A)

Proof. I prove only the latter biconditional since the proof of the former is identical.
By supposition Sf(Γ ` Θ, A) i� Γ `S Θ, A. Since it follows that our RS rule is
reversible, we have that Γ `S Θ, A i� Γ ` Θ,SA. Thus

Γ ` Θ,SA⇔ Sf(Γ ` Θ, A).

�

The result of the above proof is a general method for introducing logical vocabu-
lary that is expressive of structural features. If the rules for the logical vocabulary's
introduction are reversible and the structural feature in question is preserved by L,
then the logical vocabulary will express that structural feature. I next rehearse two
speci�c cases of this: an operator that marks monotonicity and an operator that
marks classical validity.

4Note that the rest of our sequent calculus is altered such that our other rules preserve `S. E.g.
R& requires that both top sequents have either ` or `S (I do not allow mixed cases).
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4.1 Expressing Structural Features

The rules for monotonicity have the following form:

Axiom 2: If ∀∆,Λ ⊆ L0(∆,Γ `0 Θ,Λ) then Γ `M Θ.

A,Γ `M Θ
LM

MA,Γ `[M ] Θ

Γ `M Θ, A
RM

Γ `[M ] Θ, MA

I have already shown in Theorem 2.4 that weakening is preserved by the rules of
NM-MS. It therefore follows that:

Corollary 4.3. M expresses weakening/monotonicity. That is,

MA,Γ ` Θ⇔ ∀∆,Λ(∆, A,Γ ` Θ,Λ)

Γ ` Θ, MA⇔ ∀∆,Λ(∆,Γ ` Θ, A,Λ)

This means that we may expand NM-MS (our L) in order to mark in the object
language which implications are persistent under arbitrary weakenings. Next, I show
a similar result for contraction. That is, I show a way of marking sequents that are
where contraction holds. We introduce the following axiom and rules as before:

Axiom 2: If Γ `0 ∆ and for arbitrary ∆,Λ we have ∆ `0 Λ if this would be the
result of some number of applications of contraction to Γ `0 ∆, then Γ `C Θ.

A,Γ `C Θ
LC

CA,Γ `[C] Θ

Γ `C Θ, A
RC

Γ `[C] Θ, CA

I have already shown in Theorem 2.5 that contraction is preserved by the rules of
NM-MS. It therefore follows that:

Corollary 4.4. C expresses contraction.

CA,Γ ` Θ⇔ (A ∈ Γ⇒ Γ ` Θ)

Γ ` Θ, CA⇔ (A ∈ Θ⇒ Γ ` Θ) .

Alternatively and equivalently, if CA,Γ ` Θ and Γ′ ` Θ′ is the result of some number
of applications of contraction to A,Γ ` Θ then CA,Γ ` Θ i� Γ′ ` Θ′ (and likewise
for the right-hand side).

Next, I demonstrate the same for �classicality�, i.e. develop an operator that
marks implications that are valid classically.

Axiom 2: If Γ, p `0 p,Θ then Γ, p `K p,Θ (where Γ,Θ may be possibly empty).
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A,Γ `K Θ
LK

KA,Γ `[K] Θ

Γ `K Θ, A
RK

Γ `[K] Θ, KA

Again, I have already shown in Theorem 2.7 that classicality is a feature NM-MS
preserves. Thus any sequent which is derived from atomic sequents which are part of
the CO (cf. De�nition 2.6) fragment of `0 (regardless of whether `0 actually obeys
CO) will be classically valid.

Corollary 4.5. Let `LK be the consequence relation instantiated by Gentzen's LK
minus the rules for quanti�ers (and with ∧ substituted with &, etc.). Then K ex-
presses classical validity, that is:

KA,Γ ` Θ⇔ A,Γ `LK Θ

Γ ` Θ, KA⇔ Γ `LK Θ, A

There are of course many further possibilities for such `S' operators. We may also
introduce vocabulary for expressing inference that obey, transitivity + weakening,
more restricted weakening principles, and perhaps more.

4.2 Some Defective Cases

So far I have introduced a more precise criterion for understanding logical expres-
sivism and in particular for understanding how structural features of inference might
be expressed. I then introduced a system that was not only expressive in this sense,
but also successfully preserved and expressed several important structural features.
In order to appreciate exactly what I am up to, however, it will be useful to look at
some cases where each of these criteria fail.

Example 4.6. The multiplicative rules of linear logic are not expressive. I show
that this is the case for the multiplicative conjunction ⊗:

Γ, A,B ` Θ
L⊗

Γ, A⊗B ` Θ

Γ ` Θ, A ∆ ` Λ, B
R⊗

Γ,∆ ` Θ,Λ, A⊗B

It is su�cient to show a case where the logic does not express particular implica-
tions in `0. Notice that there are potentially two ways to derive p⊗ q ` p⊗ q where
p, q ∈ L0:

p ` p q ` q
R⊗

p, q ` p⊗ q
L⊗

p⊗ q ` p⊗ q

p, q ` q
L⊗

p⊗ q ` q ` p
R⊗

p⊗ q ` p⊗ q

12
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Since the atomic sequents used to start each proof tree are di�erent (in fact they
are entirely di�erent), it's possible that `0 includes one and `′0 includes the other
and thus the presence of p⊗ q ` p⊗ q does not guarantee the presence of either. In
this sense, logics which include `⊗' are not expressive in the relevant sense.

It is also possible to �nd counter-examples to Sf-Preservation and Sf-Expression.
Even using the rules of NM-MS such counter-examples will arise:

Example 4.7. Suppose we want to introduce an operator `R ' to mark instances
of re�exivity, i.e. φ ` φ. Then the rules for introducing such an operator should
probably have the form:

Axiom 2: If p `0 p then p `R p.

A,Γ `R Θ
LR

RA,Γ `[R] Θ

Γ `R Θ, A
RR

Γ `[R] Θ, RA

Unfortunately, it is easy to show that NM-MS fails to preserve re�exivity and
thus fails to express it. For example A&B ` A&B is clearly an instance of re�exivity
and thus we should want A&B ` R(A&B). But clearly A&B ` A&B must be
derived from A,B ` A and A,B ` B, neither of which are instances of re�exivity.5

There will therefore be logics which in general fail to be expressive and even
among those that are expressive there will be structural features that fail to be
preserved and thus expressed. Deciding how expressive one wants one's logic to be
and which structural features ought to be preserved are therefore not independent
questions.

5Though they are both found in the region of the consequence relation which allows re�exivity
together with weakening, hence why we are able to have an operator to mark classicality.
It is also worth remarking that the above might also fail for independent reasons. For example,

if we are able to derive A&B ` A&B, then we could also derive A&B ` B&A, but is the latter
here an instance of the structural feature of re�exivity? It is not obvious that we should think
so. In general, even when a sequent calculus preserves re�exivity, it needn't generate only re�exive
sequents from the re�exive fragment of its axioms.
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